

SPONSORED BY THE

GROWWATER AS A GLOBAL RESOURCE

InoCotton GROW

REDUCING THE WATER FOOTPRINT OF THE GLOBAL COTTON-TEXTILE INDUSTRY TOWARDS THE UN-SDGs

SPONSORED BY THE

Dr. Frank-Andreas Weber (FiW) and InoCottonGROW Project Team February 20th, 2019

MID-TERM CONFERENCE AT UNIVERSITY OF AGRICULTURE, FAISALABAD

Invitation to Mid-Term Conference

Water Footprints of the Cotton-Textile Value Chain: Environmental Repercussions from Field to Hanger

January 29 to February 02, 2019

VENUE New Senate Hall University of Agriculture Faisalabad

Jointly Organized by Faculty of Agricultural Engineering & Technology, UNIVERSITY OF AGRICULTURE FAISALABAD & BMBF-InoCottonGROW Project Partners

InoCotton GROW

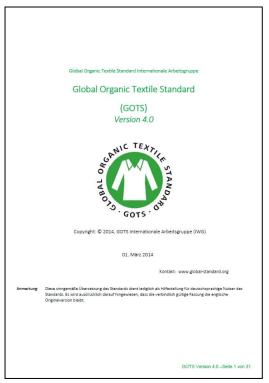
COOPERATION PARTNERS

COTTON-TEXTILE VALUE CHAIN

	Germany	Pakistan
Population	82 million	208 million
Cotton Production	-	1.8 million tons
People employed in Cotton Textile-Retailing Value Chain	94'000	> 25 million
Import of Textiles and Clothing	42 Billion EUR (1.3 Billion EUR directly from Pakistan)	
Turnover of Textile Retailing Business	63 Billion EUR	-

UN-SDG 6 "Clean Water and Sanitation" and related Targets in 2015 (UN-STAT 2018, https://unstats.un.org/sdgs/)

6.1.1 Population using safely managed drinking water	99.2 %	35.6 %
6.3.2 River water bodies with good ambient water quality	35.1 %	No data
6.4.2 Level of water stress	41.5 %	102.5 %
3.9.2 Mortality due to unsafe water and sanitation per 100,000 population	0.6	19.6
2.1.1 Prevalence of undernourishment	<2.5%	19.9%

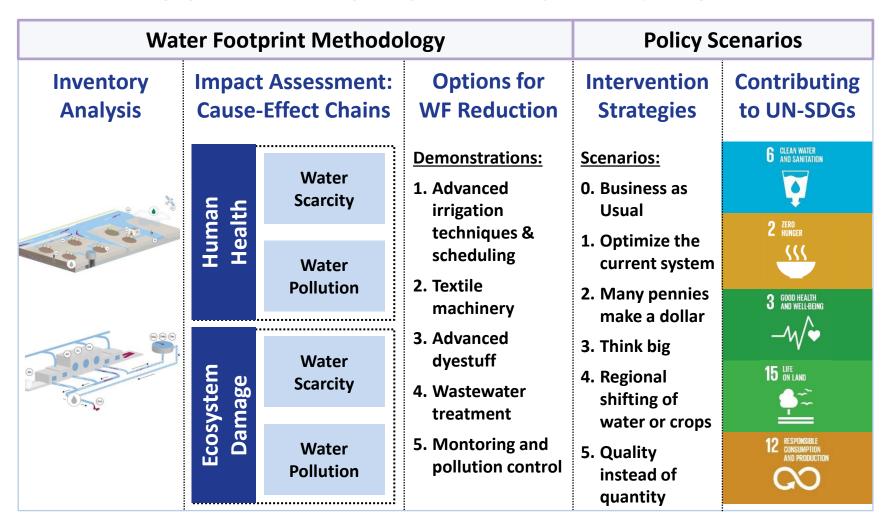


WASTEWATER TREATMENT AND WATER QUALITY

Due to public pressure, brands are increasingly demanding their producers to comply with environmental standards.

ZDHC (2016) OEKO-TEX (2017) GOTS (2014)

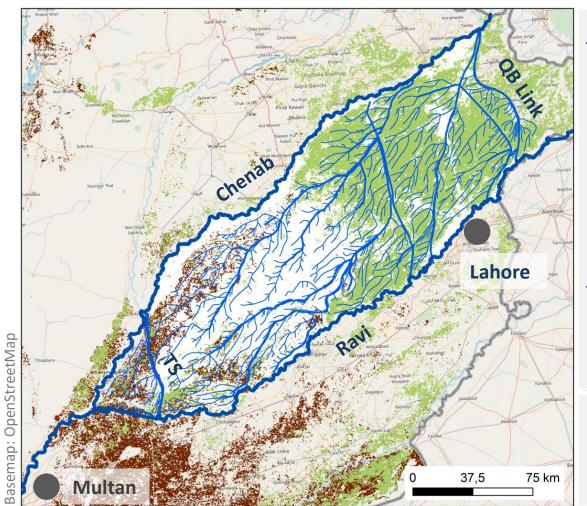
6



PROJECT GOALS

- 1. Make the water footprint a meaningful steering indicator for decision-makers, retailers & consumers
- 2. How water-intensive is the Cotton-Textile Value Chain really? From inventory analysis to impact assessment in Punjab
- 3. How to improve: Five demonstration projects
- **4. Scenarios:** consistent options for intervention given the current economic and institutional framework
- 5. Contribution towards **UN-Sustainable Development Goals**
- 6. Support **German retailers & consumers** in sustainable consumption

WATER FOOTPRINT AS A STEERING INDICATOR

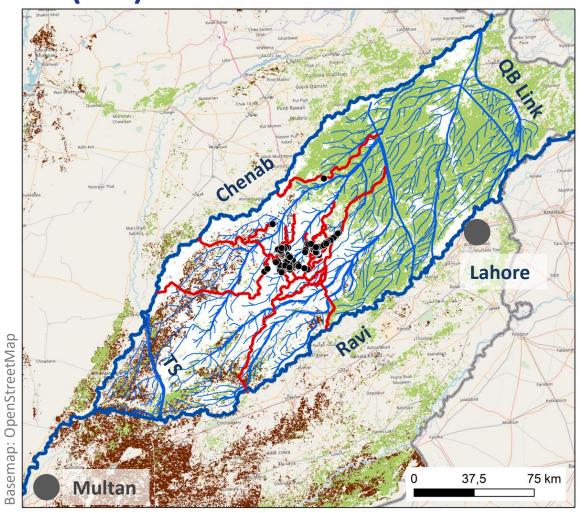

IMPACT ASSESSMENT: CAUSE-EFFECT CHAINS

Water Scarcity Water Pollution (CE1) Impact of water scarcity on (CE2) Impact of water pollution on loss of yield and malnutrition drinking water quality **Human Health** Fi∀ © FiW (CE3) Impact of water scarcity on (CE4) Impact on river water quality and **Ecosystem Damage** damage to freshwater ecosystems toxicity to aquatic ecosystems Kalhoro et al (2016): Kotri BarRage

asemap:

(M1) SATELLITE REMOTE SENSING

Land-Use Land-Cover Mapping (2005-2017)


- MODIS NDVI: 250 m resolution
- Sentinel 1 & 2: 20 m resolution
- Ground truthing: 1400 locations
- **Both unsupervised and** machine learning techniques

Cotton in Punjab province: 2.35 ± 0.21 million ha (47% of cultivated irrigated land)

- Cotton
- Rice

(M6) TEXTILE MILLS AND WASTEWATER IN LCC AREA

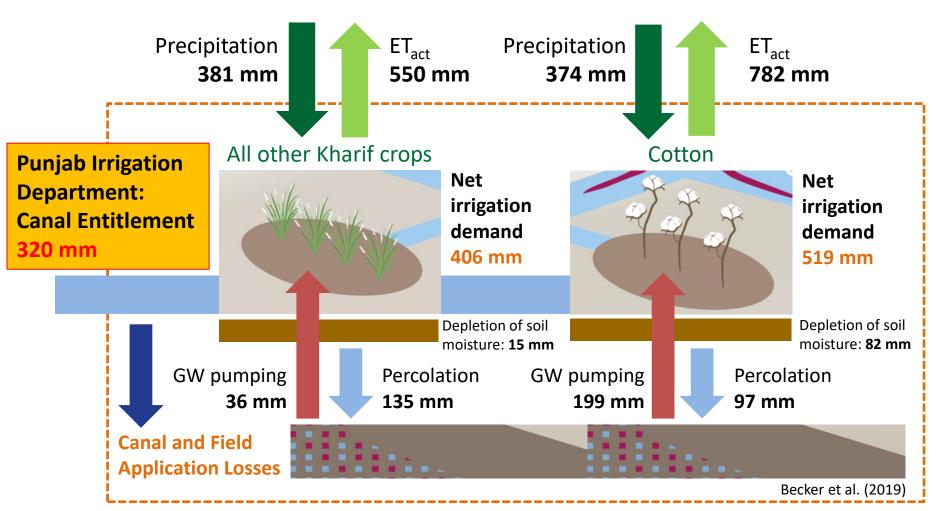
- 85 Textile processing mills in larger Faisalabad, approx. 10 with installed wastewater treatment
- Central Drains

Foto: © FiW

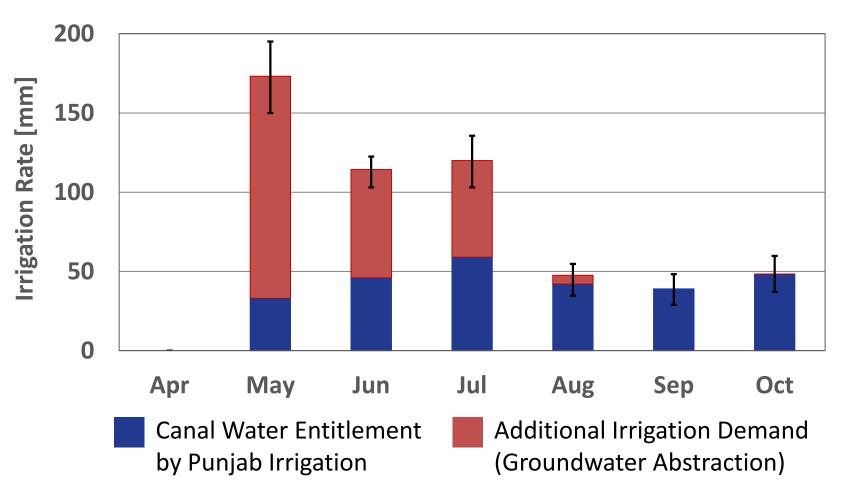
(M5) COTTON FARMERS IN WARABANDI SYSTEM

FACE-TO-FACE INTERVIEWS WITH 152 + 69 FARMERS

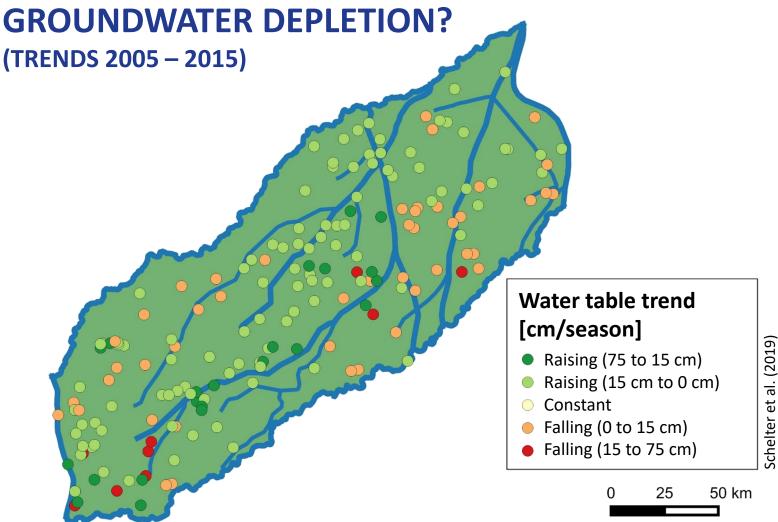
	Average	(Range)
Age	42	(19 - 80)
Schooling	10 years	(0-19)
Land ownership	2 ha	(0 – 40 ha)
Net income	1768 €/a	(177 - 42440 €/a)
Water shortage	70% experience water shortages (mainly April/May and winter)	
Water theft	26% complain when upstream farmers use more water than allowed in Warabandi system	
Raw Cotton Yield	2499 kg/ha ± 1500 kg/ha	
Groundwater abstraction in Kharif	184 mm ± 27 mm	



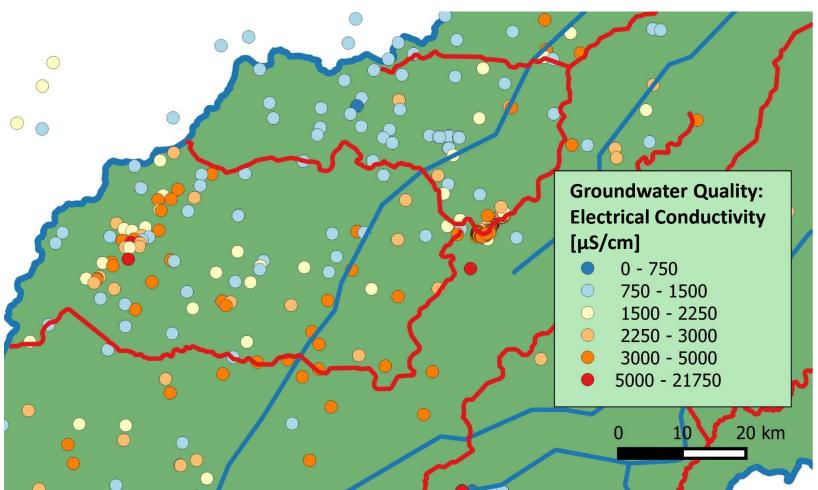
Zimmermann et al. (2018) and Usman et al. (2017)


(M3) HYDROLOGIC SWAT MODEL IN LCC AREA

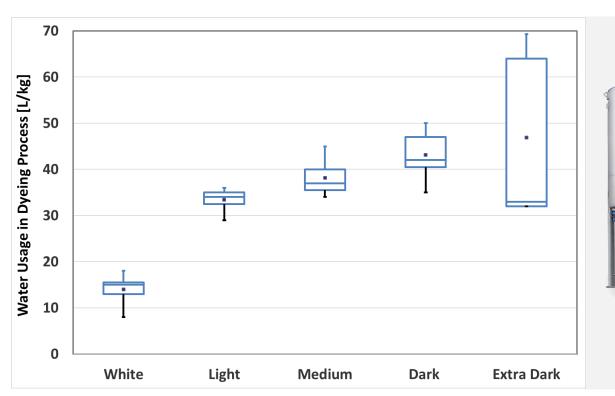
CROP IRRIGATION IN KHARIF SEASON (MEAN 2004-2013)



(M3) DEMAND FOR COTTON IRRIGATION

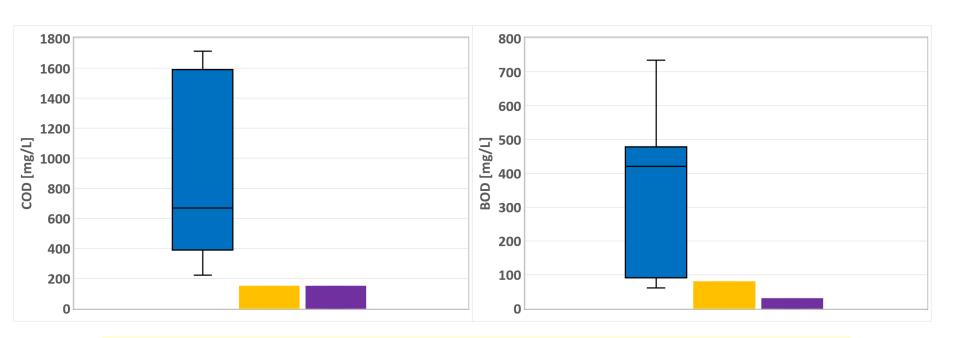


(M4) HYDRAULIC GROUNDWATER MODEL (FEFLOW)


(M4) GROUNDWATER QUALITY

(M7) WATER USE OF EXHAUST DYEING MACHINERY

THIES IMASTER OPERATED IN PAKISTAN (N=7-9)

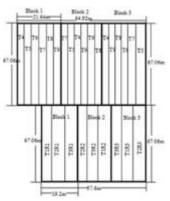

Freericks, THIES (2018)

(M6) WASTEWATER OF TEXTILE PROCESSING PLANTS

RESULTS OF 9 COMPANY SURVEYS

- Box-Plot of Wastewaster Compositions (n=9)
- Pakistan National Emission Standard
- Zero Discharge of Hazardous Chemicals (ZDHC) Foundational

SPONSORED BY THE

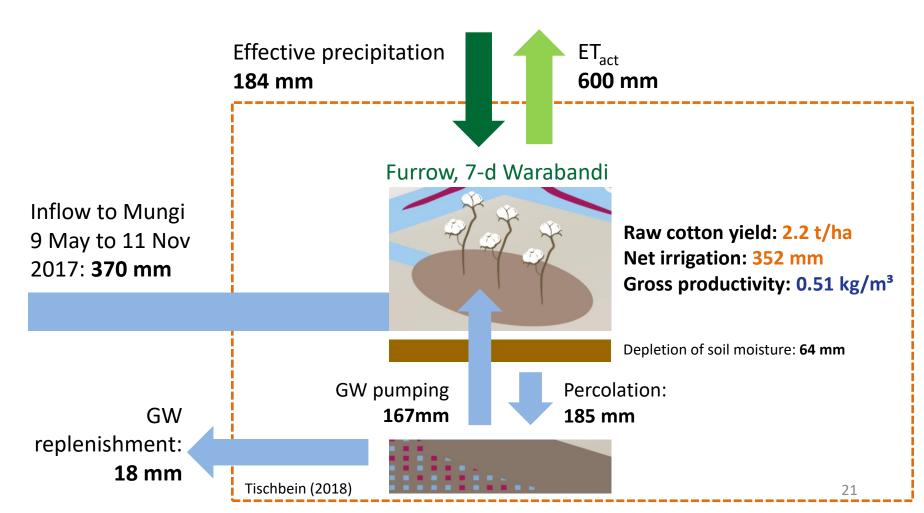

(D1) IMPROVED WATER PRODUCTIVITY

	Yield [t/ha]	Efficiency	Productivity [kg raw cotton / m³ gross irrigation]
Furrow full irrigation	2.95	64%	0.48
Drip irrigation	3.25	90%	0.68
Furrow 10% deficit	2.64	71%	0.48
Furrow 20% deficit	2.35	80%	0.48

Tischbein (2018)

Irrigation experiments with UAF at WMRC

Area supplied by the Mungi Distributary Canal



(M2) FLEXIBLE IRRIGATION SCHEDULING IN MUNGI

Options evaluation by FAO-AquaCrop Model

(D2/D3) WATER-EFFICIENCY IN EXHAUST DYEING

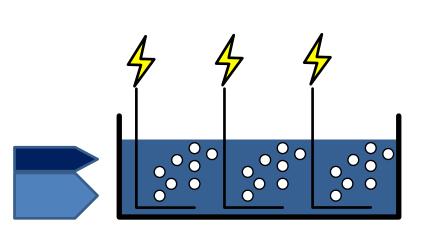
From 69 to 52-62 L/kg for black shade dyeing by THIES online process control and down to 38 L/kg by CHT advanced dyestuff 4SUCCESS

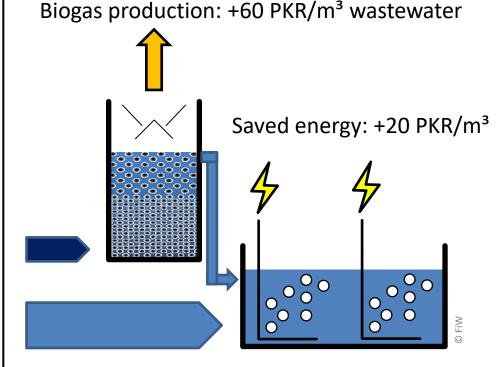
Freericks, THIES (2018)

22

(D4) ANAEROBIC TREATMENT OF DESIZING WASTEWATER

63% COD reduction plus biogas production 0.33 m³/kg COD



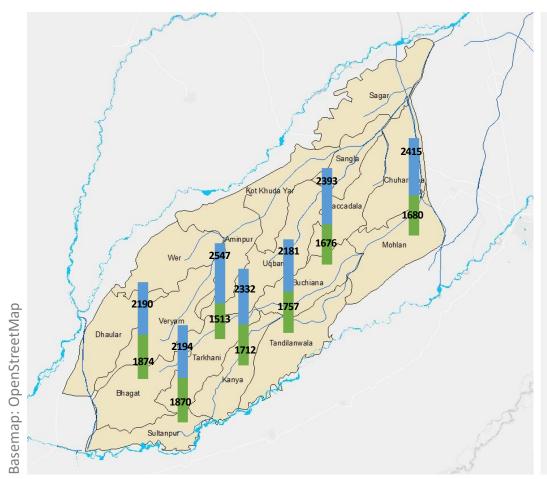

(D4) ANAEROBIC TREATMENT OF DESIZING WASTEWATER

63% COD reduction plus biogas production 0.33 m³/kg COD

Full Aerobic Effluent Treatment Plant for Mixed Textile Wastewater

Aerobic Effluent Treatment Plant after Anaerobic Pretreatment of Desizing Wastewater

Operation and Maintenance: -30 PKR/m³

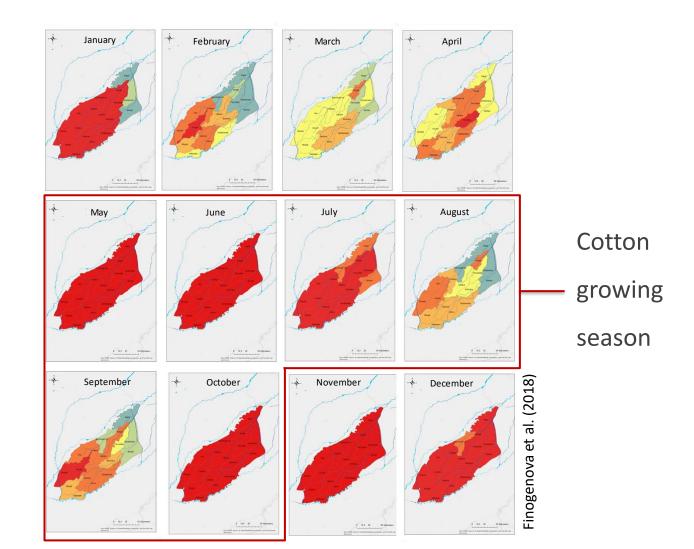

POLICY SCENARIOS FOR REDUCING THE WATER FOOTPRINT TOWARDS ACHIEVING UN-SDGs

SPONSORED BY THE

GREEN AND BLUE WATER CONSUMPTION

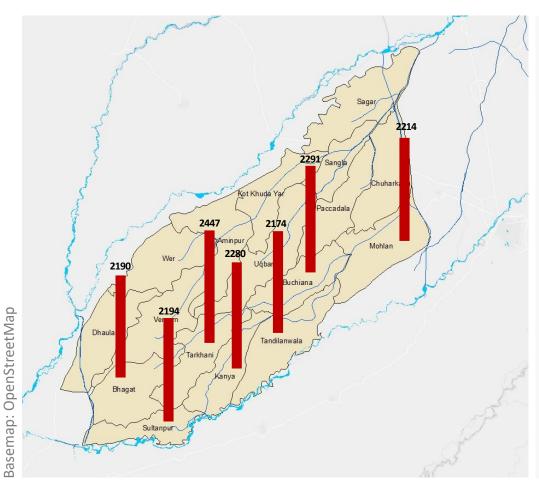
Water consumption in cotton farming (production weighted average):

2318 L blue/kg raw cotton 1723 L green/kg raw cotton


higher than previous literature data for Punjab (Mekonnen & Hoekstra, 2011)

1898 L blue water/kg
1122 L green water/kg

Finogenova et al. (2018)


WATER SCARCITY ASSESSMENT

WATER SCARCITY FOOTPRINT (WSF)

Water Scarcity Footprint (WSF) (production weighted average):

2269 L deprived/kg raw cotton

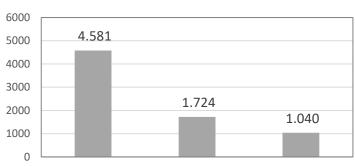
above results obtained using water scarcity factors on a country and/or watershed level (Berger et al., 2014, 2018)

1594 L deprived/kg raw cotton

Finogenova et al. (2018)

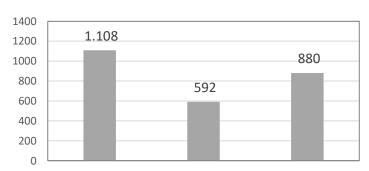
GREY WATER FOOTPRINT

Cotton Farming


- Calculation based on NO₃- leaching from fertilizers (depend on threshold, leaching rate, and calculation method applied)
- Pesticide toxicity: impact assessment on human health and ecosystems under way

Textile Wastewater

- Calculation based on most penalizing water quality parameters (BOD or COD)
- Heavy metals toxicity: impact assessment under way


Product Environmental Footprint (PEF)
Water Footprint Network (WFN)
Zero Discharge of Hazardous Chemicals, foundational (ZDHC-f)
National Environmental Quality Standards of Pakistan (NEQS)

Grey WF [L/kg raw cotton]

InoCottonGROW InoCottonGROW Hoekstra (2006) (PEF guidance) (WFN method)

Grey WF [L/kg fabric]

InoCottonGROW InoCottonGROW Hoekstra (2006)
(ZDHC-f) (NEQS)

POLICY SCENARIO: "S2 MANY PENNIES MAKE A DOLLAR"

	Options for intervention	WF	UN-SDGs Indicators
Cotton	 Promotion of flexible irrigation scheduling within Warabandi system 	1	6.4.2 (+) 2.1.1 (+)
S	• Promotion of advanced irrigaton techniques (e.g., drip)		2.3.1 (+)
ile	Promotion of water-efficient machinery in textile processing		7.b.1 (+)
Textile	Promotion of advanced dyestuff and process chemicals	\Rightarrow	6.4.1 (+) 12.4.1 (+)
Wastewater	 Installation and operation of effluent WWTPs in all large- and medium-size textile finishing plants 	1	6.1.1 (+) 6.3.1 (+) 3.9.3 (+) 7.3.1 (-)

PRELIMINARY CONCLUSION & NEXT STEPS

1. WF as a Steering Indicator

- Installation of functioning wastewater treatment has a main impact on reducing grey water footprint
- For achieving UN-SDGs, other measures are also important

2. Workshops, Trainings, and Roadmap IWRM

- Punjab irrigation reform: Institutional gaps in water allocation prevail. Monitoring and sanctioning hardly exist
- Environmental authorities are currently not in a position to assure compliance with existing wastewater standards

3. Awareness Raising: Brands, Retailers, and Consumers

- Internet-based WF tool
- Integration of the WF concept into textile labels?
- 12-min Documentary Video available on YouTube

آپ کی توجہ کے لئے آپ کا شکریہ.

Dr. sc. Frank-Andreas Weber Dr.-Ing. Friedrich-Wilhelm Bolle

Kackertstraße 15 – 17 52056 Aachen, Germany Phone: +49 (0) 241 8023952 weber@fiw.rwth-aachen.de www.fiw.rwth-aachen.de

SPONSORED BY THE

The project is funded by the Federal Ministry of Education and Research (BMBF) within the framework of the funding measure "Water as a Global Resource (GRoW)"

www.inocottongrow.net