Water Footprint of Organizations Local Actions in Global Supply Chains (WELLE)

Silvia Forin, Dr.-Ing. Markus Berger, Jonas Bunsen, Prof. Dr. Matthias Finkbeiner

Stockholm, 26 August 2019

Technische Universität Berlin Institut für Technischen Umweltschutz Fachgebiet Sustainable Engineering SPONSORED BY THE

貅

Federal Ministry of Education and Research

GROW WATER AS A GLOBAL RESOURCE

Why WELLE?

- Companies measure, manage and communicate their <u>direct</u> water use and waste water discharge
- ...usually < 5% of total water footprint
- <u>Indirect</u> water use of agriculture, mining, material and energy production more relevant - but out of scope...

- \rightarrow WELLE enables companies to:
- Determine their total water footprint
- Identify relevant material and local hotspots in global supply chains
- Take actions in cooperation with suppliers/stakeholders

From products to organizations: modelling the value chain and prioritizing data collection

3

WELLE database and tool

- Based on thinkstep's LCA database, a
 WELLE database is established providing the
 geographically explicit water use data for
 >100 materials & energy carriers
 (http://welle.see.tu-berlin.de/#database)
- To make the method applicable, a software tool is currently developed (<u>http://welle.see.tu-berlin.de/#tool</u>)
- Users enter direct water use and indirect upstream/downstream activities
- Tool shows both material-related and regional hotspots

1	_ 2	3	(4	6	6	
Indirect Upstream D Activities	irect Activities	Indirect Downstream Activities	Supporti	ing Activities	Result Maps	Result Charts	
 Purchased Fuels and Energies 		Stainless Steel					
 Fuels Electricity 		Amount					
 Purchased Goods and Mate 	erials	Base case 0.001	S α	cenario1	•	[t] Steel stainless	
Agricultural Products							
✓ Chemicals/Plastics		Country - Nickel					~
∧ Metals		Country - Steel production	on				~
Aluminium							

material hotspots

regional hotspots

LOCAL WATER SCARCITY MITIGATION

- Initiate local actions at hotspots in global supply
- Involve suppliers, local stakeholders, and water stewardship community
- Relevant but challenging...

SUSTAINABLE SUPPLY CHAIN MANAGEMENT

- Sustainability criteria for purchase decisions
- Ecodesign
- \rightarrow Involvement of purchase and R&D departments

http://welle.see.tu-berlin.de

WELLE: Insights on assessing the organisational water scarcity footprint of the production of amino acids

Case study from Evonik Nutrition & Care GmbH

Aurélie Wojciechowski Evonik Nutrition & Care GmbH

World Water Week 2019 – 26th August

- Comparison of two amino acid production lines
- Water scarcity footprint of the production of Methionine (MetAMINO[®]) in Antwerp (Belgium) and Lysine (BioLys[®]) in Blair (USA), two feed additives used for swine and poultry (focus on the production of 1 ton chicken live-weight)
- Strong focus on the supply chain (country of origin and region of production of raw materials)
- Two assessment levels: product level and manufacturing plant level (organizational water footprint) for 2017

Challenges faced while exploring the supply chain

MetAMINO[®]: chemical process

Suppliers of some raw materials are changing from year to year, international trading

- o Country of origin of raw materials and consequently water scarcity impacts might strongly change over the years
- o Discussion to integrate sustainability indicators related to water scarcity in the choice of suppliers (Procurement)

BioLys[®]: Bio-based product from corn

~95% of the water consumption of BioLys[®] comes from corn cultivation (irrigation)
 Low impact from other raw materials and from the water used for the fermentation
 Getting more information about specific water consumption for the corn cultivation:

Strong local differences observed in the water scarcity around Blair

Water scarcity in USA

Water scarcity in a radius of 150 km around Blair

Water Scarcity Footprint results: kg water equivalent per kg amino acid

Organizational activities: Business travels, employee commuting, company cars, administration and capital equipment calculated for the plant Antwerp and Blair and allocated to Methionine and Lysine

→ Low contribution to the overall Water Scarcity Footprint

Water Scarcity Footprint reduction:

Process optimization should rather focus on upstream activities (i.e. increasing yield \rightarrow lower sugar consumption) than on activities at the facility level (i.e. reducing water consumption for the fermentation and downstream processes)

Water Stewardship approach for the Biolys[®] production

Deeper exchange with local corn starch hydrolysate supplier: more information on the local corn sourcing, amount of water used for corn irrigation (i.e. primary data)

Exchange with the Central Nebraska Irrigation Project planned

Integrating "Water Scarcity Indicators" in purchase decisions

Thank you for your attention!

