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Background and rationale

e Exploit wealth of information from time-series data for enhanced land use

mapping

e Time-series data still exhibits data gaps (i.e. clouds) and large data volumes
a problem for many users in developing nations

e Information about the extent of rainfed and irrigated land are needed for
drought impact and food production estimates and land policies,

— But this information is still missing
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Objectives

e Optimize harmonics curve parameters (representing crop phenology) and
machine learning classification from Landsat time series data (2013-2018), to
map the spatial distribution of irrigated and rainfed agriculture in Zimbabwe
— Help to gauge food supply
— Understand resilience of the agro-ecological system to climate variability
— Produce land use data that is critical to land management policies on drought and food security
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Why harmonics?

Landsat NDVI time series in Zimbabwe
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Why harmonics?
~ Data Gaps

NDVI time series
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Why harmonics?
~ Data Gaps »*Many parameters

. Noise

NDVI time series
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Why harmonics? 5

o
NDVI time series with harmonic fitting
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What are Harmonics?

/I;Iarmonic degree
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Optimizations & utility

e Can be optimized depending on: noise levels, data gaps, length of data series

Harmonic degree . . NDVI time series length
n 2013 to 2018

Include a the linear trend? ¢ Harmonic period length
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Other pros and cons

e Pros: Continuous curve, computationally effective, Shape and brightness, other
filtering functions between extreme points may results in non-comparable phenology
metrics (amplitude)

e Cons: noise over image invariant, outliers/gaps can result in wild swings, inter-
annual dynamics difficult to handle (needs stable seasonality)
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For instance, compared to ,State of Art' data fusion

e Characterized by regression coefficients, the computational and storage costs
are far less than data stacks created by fusion algorithms
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Sampling of test and model evaluation pixels
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Mean Landsat NDVI harmonics for farm systems and
natural vegetation in Zimbabwe

NDVI phenology of different land cover types
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Results: Optimizing harmonics - length of time series

Longer time series
perform superior
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Results: Optimizing harmonics — harmonic degree
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Results: Optimizing harmonics - linear trend
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Results: Optimizing harmonics - Best harmonic frequency
(vy) against time series length in years (x).
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Harmonics frequency = 1.8598 + 0.9848 * length of time series (R?=0.88)
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Result (97% accuracy)- using optimized LS harmonics & random forest
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Rainfed and
irrigated
agriculture (as
an important
vulnerability
aspect)
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Drought
vulnerability
using animal
density, GDP,
farming
systems
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Drought risk
using hazard
and
vulnerability
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* Drought risk assessment for Southern Africa is constrained by the lack of
basic information

» Global data sets are often not accurate enough for use in regional
assessments
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Results — comparison with state-of-art croplands map (GFSAD)

aerial This result GFSAD30
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Results — comparison with state-of-art croplands map (GFSAD 30)

aerial This study GFSAD30
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Conclusions

e Harmonics method has many advantages when aim is to effectively exploit
the Landsat time-series over Africa for enhanced mapping

* Farm systems mapping; using optimizations, accuracies of over 97% and
more thematic detail than state-of-art map

* Information about farming systems are important for land management
policies pertaining to drought and food security
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